3.512 \(\int \csc (e+f x) \sqrt{d \csc (e+f x)} \, dx\)

Optimal. Leaf size=68 \[ -\frac{2 \cos (e+f x) \sqrt{d \csc (e+f x)}}{f}-\frac{2 d E\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right )}{f \sqrt{\sin (e+f x)} \sqrt{d \csc (e+f x)}} \]

[Out]

(-2*Cos[e + f*x]*Sqrt[d*Csc[e + f*x]])/f - (2*d*EllipticE[(e - Pi/2 + f*x)/2, 2])/(f*Sqrt[d*Csc[e + f*x]]*Sqrt
[Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0391602, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {16, 3768, 3771, 2639} \[ -\frac{2 \cos (e+f x) \sqrt{d \csc (e+f x)}}{f}-\frac{2 d E\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right )}{f \sqrt{\sin (e+f x)} \sqrt{d \csc (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]*Sqrt[d*Csc[e + f*x]],x]

[Out]

(-2*Cos[e + f*x]*Sqrt[d*Csc[e + f*x]])/f - (2*d*EllipticE[(e - Pi/2 + f*x)/2, 2])/(f*Sqrt[d*Csc[e + f*x]]*Sqrt
[Sin[e + f*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \csc (e+f x) \sqrt{d \csc (e+f x)} \, dx &=\frac{\int (d \csc (e+f x))^{3/2} \, dx}{d}\\ &=-\frac{2 \cos (e+f x) \sqrt{d \csc (e+f x)}}{f}-d \int \frac{1}{\sqrt{d \csc (e+f x)}} \, dx\\ &=-\frac{2 \cos (e+f x) \sqrt{d \csc (e+f x)}}{f}-\frac{d \int \sqrt{\sin (e+f x)} \, dx}{\sqrt{d \csc (e+f x)} \sqrt{\sin (e+f x)}}\\ &=-\frac{2 \cos (e+f x) \sqrt{d \csc (e+f x)}}{f}-\frac{2 d E\left (\left .\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )\right |2\right )}{f \sqrt{d \csc (e+f x)} \sqrt{\sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.128092, size = 57, normalized size = 0.84 \[ \frac{(d \csc (e+f x))^{3/2} \left (2 \sin ^{\frac{3}{2}}(e+f x) E\left (\left .\frac{1}{4} (-2 e-2 f x+\pi )\right |2\right )-\sin (2 (e+f x))\right )}{d f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]*Sqrt[d*Csc[e + f*x]],x]

[Out]

((d*Csc[e + f*x])^(3/2)*(2*EllipticE[(-2*e + Pi - 2*f*x)/4, 2]*Sin[e + f*x]^(3/2) - Sin[2*(e + f*x)]))/(d*f)

________________________________________________________________________________________

Maple [C]  time = 0.121, size = 514, normalized size = 7.6 \begin{align*}{\frac{\sqrt{2}}{f} \left ( 2\,\cos \left ( fx+e \right ) \sqrt{{\frac{-i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}\sqrt{-{\frac{i\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}{\it EllipticE} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}},1/2\,\sqrt{2} \right ) -\cos \left ( fx+e \right ) \sqrt{{\frac{-i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}\sqrt{-{\frac{i\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}},{\frac{\sqrt{2}}{2}} \right ) +2\,\sqrt{{\frac{-i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}\sqrt{-{\frac{i\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}{\it EllipticE} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}},1/2\,\sqrt{2} \right ) -\sqrt{{\frac{-i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}\sqrt{-{\frac{i\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}},{\frac{\sqrt{2}}{2}} \right ) -\sqrt{2} \right ) \sqrt{{\frac{d}{\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)*(d*csc(f*x+e))^(1/2),x)

[Out]

1/f*2^(1/2)*(2*cos(f*x+e)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)
*(-(I*cos(f*x+e)-sin(f*x+e)-I)/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*
2^(1/2))-cos(f*x+e)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)*(-(I*
cos(f*x+e)-sin(f*x+e)-I)/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/2
))+2*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-sin(
f*x+e)-I)/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/2))-(-I*(-1+cos(
f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-sin(f*x+e)-I)/sin(f*x
+e))^(1/2)*EllipticF(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/2))-2^(1/2))*(d/sin(f*x+e))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \csc \left (f x + e\right )} \csc \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(d*csc(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*csc(f*x + e))*csc(f*x + e), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{d \csc \left (f x + e\right )} \csc \left (f x + e\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(d*csc(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*csc(f*x + e))*csc(f*x + e), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \csc{\left (e + f x \right )}} \csc{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(d*csc(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(d*csc(e + f*x))*csc(e + f*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \csc \left (f x + e\right )} \csc \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(d*csc(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*csc(f*x + e))*csc(f*x + e), x)